Langevin dynamics for a Lévy walk with memory
نویسندگان
چکیده
منابع مشابه
Langevin description of superdiffusive Lévy processes.
The description of diffusion processes is possible in different frameworks such as random walks or Fokker-Planck or Langevin equations. Whereas for classical diffusion the equivalence of these methods is well established, in the case of anomalous diffusion it often remains an open problem. In this paper we aim to bring three approaches describing anomalous superdiffusive behavior to a common fo...
متن کاملSingle integrodifferential wave equation for a Lévy walk.
We derive the single integrodifferential wave equation for the probability density function of the position of a classical one-dimensional Lévy walk with continuous sample paths. This equation involves a classical wave operator together with memory integrals describing the spatiotemporal coupling of the Lévy walk. It is valid at all times, not only in the long time limit, and it does not involv...
متن کاملSwarming bacteria migrate by Lévy Walk
Individual swimming bacteria are known to bias their random trajectories in search of food and to optimize survival. The motion of bacteria within a swarm, wherein they migrate as a collective group over a solid surface, is fundamentally different as typical bacterial swarms show large-scale swirling and streaming motions involving millions to billions of cells. Here by tracking trajectories of...
متن کاملThe evolutionary origins of Lévy walk foraging
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher's information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolut...
متن کاملRandom walk with memory
There are a large number of different modifications and variants of the usual symmetrical random walk ~RW!. Let us mention only Levy flights, biased diffusions, self-avoiding walk ~SAW for short!, etc. Let us confine ourselves to the random walks on the discrete lattices. In SAW a walking particle is choosing its trajectory in such a way that it does not step down onto the already visited site....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2019
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.99.012135